
Specification: introducing „XRechnung“ into invoicing module

Introduction

Since more than 12 years we have developed a CRM system named “business manager” (bm). But

this system includes more than a usual CRM system. E.g. it includes a webmail module, an invoicing

module and a support module.

We have started to develop a client-server application but later we decided to re-design the app and

to develop a web-based system. Since many years the bm is in production now and many customers

are using it as a “Software as a service” (Saas). Although it is possible to use bm as an in-house

solution all of our customers are using the web application, we are hosting and supporting on

www.bm-od.com.

Our customers are happy about the functionality. So since some years we have reduced our effort to

add more functionality. Also we missed to update to new version of underlying software, which

means our CRM currently is not running on up-to-date underlying software.

Now we have to change our developing team and we are searching for a new one. We have a list of

tasks, mainly changes in functionality and updating to new versions. But the first task will be to add

functionality in invoicing module, because that new functionality is needed by our customers. These

changes are described later in this document. As written we are thinking about updating the system,

but this is not part of this project now. So the described changes have to be developed using not up-

date technology.

The used technologies are:

 Java 7

 Java script

 MySQL 5.1

 JBoss 5.1

 Bootstrap

 Ajax

 Jasper Reports

http://www.bm-od.com/

Specification of changes in invoicing module

The invoicing module of business manager (bm) currently gives the possibility to create PDF files

(invoice document) based on the data of the invoice (database tables INVOICE, INVOICEPOSITION, …)

and a MS Word template, which defines the layout and content of the invoice document (PDF).

More and more the customers (Invoice receivers) in Germany want to save time, which is needed to

administrate incoming invoices. The idea is to get invoices in such a form, that it is possible import

them electronically. This requires that not only the PDF is sent to the customer but also additionally

the information about the content of the invoice. Currently in Germany there a two defined ways to

do this:

 “Zugpferd”, PDF-A

Here we are talking about an enhanced PDF format, which gives the possibility to include

structured data into a PDF document

 “XRechnung”

This possibility requires an additional XML file to be generated and added to the PDF.

This project is about the second possibility to generate XRechnung XML files. In the following we will

describe the current status of the bm and the required changes.

1. Possibility to create an “XRechnungen” XML file for any invoice

On this screen shot you see the basic data of an invoice (module “Finance”, function “Invoices”). This

tab “Details” shows the basic data of an invoice. A second tab “Positions” contains the details about

the invoice positions. Clicking on button “Generate” generates the already mentioned PDF invoice

document. Clicking on “Open” downloads this PDF file and clicking on “Send via mail” creates an

email and opens the webmail module of the bm showing this created email having the PDF files as an

attachment.

Changes:

 We need an additional button “XRechnung”, which creates the required XML file and

downloads it. This file will not be saved in the database.

2. Customer info

This screenshots shows an example of the customer information. This is part of the address

(contacts) module of the bm. The contacts module mainly contains the information about a contact

(address). If the contact if a (potential) customer a tab “Customer info” is opened showing data

which are relevant for customers as you can see in the screenshot. One of this information is how the

customer wants to get an invoice (“Infoice shipping”), via common letter or via email.

This information is important for the function “Sending invoice via mail”, which is described later.

Changes:

 We need to add the item “Via email + XRechnung” into the list box. If this item is selected

and the data are saved then customer.invoiceshipping=3 must be set.

 We need an additional field “Leitweg-ID” (customer.referenceid), type varchar(40), before

field “Invoice shipping”

3. Company settings

This is a screen shot of company setting (module “Home”, function “Company settings”, tab

“Preferences”.

Changes:

 Before field “Days to send an invoice” a new field must be added, named “Company tax ID”

(German “USt.-ID”), company.taxid, varchar(40)

4. Sending one invoice via email

This screenshot shows again a part of the detail page of an invoice (this time another invoice). If the

user presses the button “Send via mail” the following page is opened:

This is the webmail module of bm. The selected mail address is used and a pre-defined mail body

template is used to create this mail. And as you can see the PDF invoice document is added as an

attachment of this new mail. The user now can change the body and send by pressing “Send”.

Changes:

 In case related customer.invoiceshipping=3 additionally to the PDF the XRechnungen XML file

must be generated and added to the mail as a second attachment, having the name

Invoice_<invoice umber>.xml.

5. Sending multiple invoices via mail

This screenshot shows the function “Sending invoice via email” (module “Finances”). The user here

has the possibility to change the selection of the invoices (selection criteria in upper part). Then he

selects some of the shown invoices and presses “Send selected invoices” of to press “Send all”, which

executes the function for all shown invoices. After pressing one of both buttons a new page is shown

in which the user can select a telecom type and the mail account to be used for sending the invoices

via mail.

Pressing the “Send” button a mail for each selected invoice is created and sent the default mail

address of the invoice recipients. In this case of course the user has not the possibility the change

anything of the mails, especially not the body or attachments, because the mails are sent full

automatically.

Changes:

 Ony in case the value of customer.invocieshipping=3 of each invoices recipient there must be

added the XRechnungen XML file as a second attachment (additionally to the PDF file) to the

mail. It is important to note that for some of the mails the XML file must be added for others

may be not, depending on related customer.invocieshipping.

6. Description of XML file format

<?xml version="1.0" encoding="UTF-8"?>
<ns0:Invoice
xmlns:ns0="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2"
xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2"
xmlns:cec="urn:oasis:names:specification:ubl:schema:xsd:CommonExtensionComponents-2">
 <cbc:CustomizationID>urn:cen.eu:en16931:2017#compliant#urn:xoev-de:kosit:standard:xrechnung_2.0</cbc:CustomizationID>

fix

 <cbc:ID>invoice number</cbc:ID> Invoice number = invoice.number

 <cbc:IssueDate>invoice date</cbc:IssueDate> Invoice date = invoice.invoicedate using
format YYYY-MM-DD

 <cbc:DueDate>due date</cbc:DueDate> Due date = invoice.paymentdate using
format YYYY-MM-DD

 <cbc:InvoiceTypeCode>type code</cbc:InvoiceTypeCode> Type code =
380 if invoice.type=1
381 if invoice.type=2

 <cbc:DocumentCurrencyCode>currency code</cbc:DocumentCurrencyCode> Currency code = currency.label
(invoice.currencyid
currency.currrencyid)

 <cbc:BuyerReference>buyer reference</cbc:BuyerReference> Buyer reference =
customer.referenceid
(invoice.addressid
customer.customerid)

 <cac:AccountingSupplierParty>
 <cac:Party>
 <cac:PostalAddress>
 <cbc:StreetName>seller street</cbc:StreetName>

Seller street =
address.street + ‘ ‘ +
address.housenumber
(current companyid address.addressid)

 <cbc:AdditionalStreetName>seller address add line</cbc:AdditionalStreetName> Seller address add line =
address.addaddressline
(current companyid address.addressid)

 <cbc:CityName>seller city</cbc:CityName> Seller city = city.cityname
(current companyid address.addressid,
address.cityid city.cityid)

 <cbc:PostalZone>seller zip code</cbc:PostalZone> Seller zipc code = city.zip
(current companyid address.addressid,
address.cityid city.cityid)

 <cac:Country>
 <cbc:IdentificationCode>seller country code</cbc:IdentificationCode>
 </cac:Country>
 /cac:PostalAddress>

Seller country code = country.areacode
(current companyid address.addressid,
address.countryid country.countryid)

 <cac:PartyTaxScheme>
 <cbc:CompanyID>seller id</cbc:CompanyID>

Seller id = company.taxid
(current companyid
company.companyid)

 <cac:TaxScheme>
 <cbc:ID>tax scheme</cbc:ID>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>

Tax scheme =

 <cac:PartyLegalEntity>
 <cbc:RegistrationName>seller name</cbc:RegistrationName>

Seller name = address.name1 + ‘ ‘ +
address.name2 + ‘ ‘ + address.name3
(current companyid address.addressid)

 <cbc:CompanyID>seller id</cbc:CompanyID>
 </cac:PartyLegalEntity>

Seller id = company.taxid
(current companyid
company.companyid)

 <cac:Contact>
 <cbc:Name>contact name</cbc:Name>

Contact name = address.name2 + ‘ ‘ +
address.name1
(current userid elwisuser.userid,
elwisuser.addressid addressed)

 <cbc:Telephone>contact phone number</cbc:Telephone> Contact phone number =
telecom.telecomnumber
(current userid elwisuser.userid,
elwisuser.addressid
telecom.contactpersonid,
current companyid telecom.addressid,
telecom.telecomtypeid
telecomtype.type=’PHONE’
telecomtype.determined=1)

 <cbc:ElectronicMail>contact mail address</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:AccountingSupplierParty>

Contact mail address =
telecom.telecomnumber
(current userid elwisuser.userid,
elwisuser.addressid
telecom.contactpersonid,
current companyid telecom.addressid,
telecom.telecomtypeid
telecomtype.type=’EMAIL’
telecomtype.determined=1)

 <cac:AccountingCustomerParty>
 <cac:Party>
 <cac:PostalAddress>

fix

 <cbc:StreetName>buyer street</cbc:StreetName>

Buyer street = address.street + ‘ ‘ +
address.housenumber
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null)

 <cbc:AdditionalStreetName>buyer address add line</cbc:AdditionalStreetName> buyer address add line =
address.addaddressline
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null)

 <cbc:CityName>buyer city</cbc:CityName> buyer city =city.cityname
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null,
addressed.cityid city.cityid)

 <cbc:PostalZone>buyer zip code</cbc:PostalZone> buyer zip code =city.zip
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null,
addressed.cityid city.cityid)

 <cac:Country>
 <cbc:IdentificationCode>buyer country code</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>

buyer country code = country.areacode
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null,
addressed.countryid country.countryid)

 <cac:PartyLegalEntity>
 <cbc:RegistrationName>buyer name</cbc:RegistrationName>
 </cac:PartyLegalEntity>

buyer name =
address.name1 + ‘ ‘ address.name2 + ‘ ‘ +
address.name3
(invoice.addressid address.addressid if
invoice.sentaddressid is null,
invoice.sentaddressid
address.addressid if invoice.sentaddressid
is not null)

 <cac:Contact>
 <cbc:Name>buyer contact name</cbc:Name>
 </cac:Contact>
 </cac:Party>
 </cac:AccountingCustomerParty>

buyer contact name =
address-name2 + ‘ ‘ + address.name1
(invoice.contactpersonid
address.addressid)

 <cac:PaymentMeans>
 <cbc:PaymentMeansCode>30</cbc:PaymentMeansCode>
 <cac:PayeeFinancialAccount>
 <cbc:ID>bank account number</cbc:ID>

bank account number =
bankaccount.iban
(current companyid address.addressid,
address.bankaccountid
bankaccount.bankaccountid)

 <cbc:Name>bank account name</cbc:Name>
 </cac:PayeeFinancialAccount>
 </cac:PaymentMeans>

Bank account name =
bankaccount.accountowner
(current companyid address.addressid,
address.bankaccountid
bankaccount.bankaccountid)

 <cac:PaymentTerms>
 <cbc:Note>payment condition</cbc:Note>
 </cac:PaymentTerms>

payment condition =
paycondition.conditionname
(invoice.payconditionid
paycondition.payconditionid)

 <cac:TaxTotal>
 <cbc:TaxAmount currencyID="Currency code">VAT amount</cbc:TaxAmount>

Currency code = currency.label
(invoice.currencyid
currency.currrencyid)

Vat amount = invoice.totalamountgross –
invoice.totalamountnet (using “.” as
decimal separator and always two digits
after decimal separator, example: 6.70)

 <cac:TaxSubtotal>
 <cbc:TaxableAmount currencyID="Currency code">taxable amount</cbc:TaxableAmount>
 <cbc:TaxAmount currencyID=" Currency code ">tax amount</cbc:TaxAmount>
 <cac:TaxCategory>
 <cbc:ID>tax id</cbc:ID>
 <cbc:Percent>tax percentage</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:TaxCategory>
 </cac:TaxSubtotal>

!!! This past must be generated for each
related record in table invoicevat with
invoice.invoiceid invoicevat.invoiceid

Currency code = currency.label
(invoice.currencyid
currency.currrencyid)

taxable amount = sum
(invoiceposition.totalprice) with
invoiceposition.invoiceid
invoicevat.invoiceid and
invoiceposition.vatid invoicevat.vatid

tax amount = invoicevat.amount

tax id = “S”

tax percentage = invoicevat.vatrate (using
“.” as decimal separator and always two
digits after decimal separator)

 </cac:TaxTotal> fix

 <cac:LegalMonetaryTotal>
 <cbc:LineExtensionAmount currencyID="Currency code”>total net</cbc:LineExtensionAmount>
 <cbc:TaxExclusiveAmount currencyID="Currency code">total net</cbc:TaxExclusiveAmount>
 <cbc:TaxInclusiveAmount currencyID="Currency code">total gross</cbc:TaxInclusiveAmount>
 <cbc:PayableAmount currencyID="Currency code">total gross</cbc:PayableAmount>
 </cac:LegalMonetaryTotal>

total net = invoice.totalamountnet

total gross = invoice.totalamountgross

(both amounts using “.” as decimal
separator and always two digits after
decimal separator)

 <cac:InvoiceLine> fix

 <cbc:ID>line id</cbc:ID>
 <cbc:InvoicedQuantity unitCode="quantity code">quantity</cbc:InvoicedQuantity>
 <cbc:LineExtensionAmount currencyID="currency code">amount</cbc:LineExtensionAmount>
 <cac:Item>
 <cbc:Name>name</cbc:Name>
 <cac:SellersItemIdentification>
 <cbc:ID>seller item identification</cbc:ID>
 </cac:SellersItemIdentification>
 <cac:ClassifiedTaxCategory>
 <cbc:ID>tax code</cbc:ID>
 <cbc:Percent>tax percentage</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:ClassifiedTaxCategory>
 </cac:Item>
 <cac:Price>
 <cbc:PriceAmount currencyID="EUR">1000</cbc:PriceAmount>
 </cac:Price>

!!! This part must be generated for each
related record in table invoicepsoition
with invoice.invoiceid
invoiceposition.invoiceid

line id = invoiceposition.number

quantity code =

quantity = invoiceposition.quantity (using
“.” as decimal separator and always two
digits after decimal separator)

Currency code = currency.label
(invoice.currencyid
currency.currrencyid)

amount = invoiceposition.totalprice
(in case invoiceposition.totalprice=null:
amount = invoiceposition.totalpricegross /
vatrate.vatrate)
invoiceposition.vatid invoicevat.vatid
and
invoiceposition.invoiceid
invoicevat.invoiceid

name =

seller item identification =

tax code = “S”

tax percentage = vatrate.vatrate
(invoiceposition.vatid invoicevat.vatid
and
invoiceposition.invoiceid
invoicevat.invoiceid)

 </cac:InvoiceLine>
</ns0:Invoice>

fix

Here is an example of such an XML file:

<?xml version="1.0" encoding="UTF-8"?><ubl:Invoice xmlns:ubl="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2"
xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:qdt="urn:oasis:names:specification:ubl:schema:xsd:QualifiedDataTypes-2"
xmlns:udt="urn:oasis:names:specification:ubl:schema:xsd:UnqualifiedDataTypes-2"
xsi:schemaLocation="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2 http://docs.oasis-open.org/ubl/os-UBL-2.1/xsd/maindoc/UBL-Invoice-2.1.xsd">
 <cbc:CustomizationID>urn:cen.eu:en16931:2017#compliant#urn:xoev-de:kosit:standard:xrechnung_2.0</cbc:CustomizationID>
 <cbc:ID>INV-08154711</cbc:ID>
 <cbc:IssueDate>2021-05-19</cbc:IssueDate>
 <cbc:DueDate>2021-06-02</cbc:DueDate>
 <cbc:InvoiceTypeCode>380</cbc:InvoiceTypeCode>
 <cbc:DocumentCurrencyCode>EUR</cbc:DocumentCurrencyCode>
 <cbc:BuyerReference>04011000-1234512345-06</cbc:BuyerReference>
 <cac:AccountingSupplierParty>
 <cac:Party>
 <cac:PostalAddress>
 <cbc:StreetName>Musterstraße 1</cbc:StreetName>
 <cbc:AdditionalStreetName>Zusatz</cbc:AdditionalStreetName>
 <cbc:CityName>Musterstadt</cbc:CityName>
 <cbc:PostalZone>12345</cbc:PostalZone>
 <cac:Country>
 <cbc:IdentificationCode>DE</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:CompanyID>DE 123 456 789</cbc:CompanyID>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>

 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>
 <cbc:RegistrationName>Musterfirma</cbc:RegistrationName>
 <cbc:CompanyID>DE 123 456 789</cbc:CompanyID>
 </cac:PartyLegalEntity>
 <cac:Contact>
 <cbc:Name>Max Mustermann</cbc:Name>
 <cbc:Telephone>+49 1234 / 56 789 - 10</cbc:Telephone>
 <cbc:ElectronicMail>Max.Mustermann@Musterfirma.de</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:AccountingSupplierParty>
 <cac:AccountingCustomerParty>
 <cac:Party>
 <cac:PostalAddress>
 <cbc:StreetName>Beispielstraße 2</cbc:StreetName>
 <cbc:AdditionalStreetName>Zusatz</cbc:AdditionalStreetName>
 <cbc:CityName>Beispielstadt</cbc:CityName>
 <cbc:PostalZone>54321</cbc:PostalZone>
 <cac:Country>
 <cbc:IdentificationCode>DE</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyLegalEntity>
 <cbc:RegistrationName>Beispielkunde</cbc:RegistrationName>
 </cac:PartyLegalEntity>
 <cac:Contact>
 <cbc:Name>Otto Kontakt</cbc:Name>
 </cac:Contact>
 </cac:Party>
 </cac:AccountingCustomerParty>
 <cac:PaymentMeans>

 <cbc:PaymentMeansCode>30</cbc:PaymentMeansCode>
 <cac:PayeeFinancialAccount>
 <cbc:ID>DE00 1234 5678 0000 1234 56</cbc:ID>
 <cbc:Name>Musterfirma</cbc:Name>
 </cac:PayeeFinancialAccount>
 </cac:PaymentMeans>
 <cac:PaymentTerms>
 <cbc:Note>14 Tage netto</cbc:Note>
 </cac:PaymentTerms>
 <cac:AllowanceCharge>
 <cbc:ChargeIndicator>false</cbc:ChargeIndicator>
 <cbc:AllowanceChargeReason>Neukundenrabatt</cbc:AllowanceChargeReason>
 <cbc:Amount currencyID="EUR">5.00</cbc:Amount>
 <cac:TaxCategory>
 <cbc:ID>S</cbc:ID>
 <cbc:Percent>19.00</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:TaxCategory>
 </cac:AllowanceCharge>
 <cac:TaxTotal>
 <cbc:TaxAmount currencyID="EUR">6.70</cbc:TaxAmount>
 <cac:TaxSubtotal>
 <cbc:TaxableAmount currencyID="EUR">35.25</cbc:TaxableAmount>
 <cbc:TaxAmount currencyID="EUR">6.70</cbc:TaxAmount>
 <cac:TaxCategory>
 <cbc:ID>S</cbc:ID>
 <cbc:Percent>19.00</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:TaxCategory>

 </cac:TaxSubtotal>
 </cac:TaxTotal>
 <cac:LegalMonetaryTotal>
 <cbc:LineExtensionAmount currencyID="EUR">40.25</cbc:LineExtensionAmount>
 <cbc:TaxExclusiveAmount currencyID="EUR">35.25</cbc:TaxExclusiveAmount>
 <cbc:TaxInclusiveAmount currencyID="EUR">41.95</cbc:TaxInclusiveAmount>
 <cbc:AllowanceTotalAmount currencyID="EUR">5.00</cbc:AllowanceTotalAmount>
 <cbc:ChargeTotalAmount currencyID="EUR">0.00</cbc:ChargeTotalAmount>
 <cbc:PrepaidAmount currencyID="EUR">0.00</cbc:PrepaidAmount>
 <cbc:PayableRoundingAmount currencyID="EUR">0.00</cbc:PayableRoundingAmount>
 <cbc:PayableAmount currencyID="EUR">41.95</cbc:PayableAmount>
 </cac:LegalMonetaryTotal>
 <cac:InvoiceLine>
 <cbc:ID>1</cbc:ID>
 <cbc:InvoicedQuantity unitCode="C62">0.5</cbc:InvoicedQuantity>
 <cbc:LineExtensionAmount currencyID="EUR">35.00</cbc:LineExtensionAmount>
 <cac:Item>
 <cbc:Name>Reparaturdienstleistung in Stunden</cbc:Name>
 <cac:SellersItemIdentification>
 <cbc:ID>REP-012</cbc:ID>
 </cac:SellersItemIdentification>
 <cac:ClassifiedTaxCategory>
 <cbc:ID>S</cbc:ID>
 <cbc:Percent>19.00</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:ClassifiedTaxCategory>
 </cac:Item>
 <cac:Price>
 <cbc:PriceAmount currencyID="EUR">70.00</cbc:PriceAmount>
 </cac:Price>
 </cac:InvoiceLine>

 <cac:InvoiceLine>
 <cbc:ID>2</cbc:ID>
 <cbc:InvoicedQuantity unitCode="C62">3</cbc:InvoicedQuantity>
 <cbc:LineExtensionAmount currencyID="EUR">5.25</cbc:LineExtensionAmount>
 <cac:Item>
 <cbc:Name>Material</cbc:Name>
 <cac:SellersItemIdentification>
 <cbc:ID>MAT-987</cbc:ID>
 </cac:SellersItemIdentification>
 <cac:ClassifiedTaxCategory>
 <cbc:ID>S</cbc:ID>
 <cbc:Percent>19.00</cbc:Percent>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 </cac:TaxScheme>
 </cac:ClassifiedTaxCategory>
 </cac:Item>
 <cac:Price>
 <cbc:PriceAmount currencyID="EUR">1.75</cbc:PriceAmount>
 </cac:Price>
 </cac:InvoiceLine>
</ubl:Invoice>

7. General

 Take care that the new texts must like “Via email + XRechnung” must be fetched from

existing resource files and must be available for all supported languages (English, German,

Spanish, French). These texts will be defined and resource files delivered by pirAMide

Germany.

 There are some tools in order to validate the correctness of an XRechnung XML file:

o https://www.epoconsulting.com/erechnung-sap/xrechnung-validator

o https://ecosio.com/de/peppol-und-xml-dokumente-online-validieren

o set of schema and xsl files

